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Abstract Marine habitats vary widely in structure, from

incredibly complex coral reefs to simpler deep water and

open ocean habitats. Hydromechanical models of swim-

ming kinematics and microevolutionary studies suggest

that these habitats select for different body shape charac-

teristics. Fishes living in simple habitats are predicted to

experience selection for energy-efficient sustained swim-

ming, which can be achieved by fusiform body shapes. In

contrast, fishes living in complex habitats are predicted to

be under selection for maneuverability, which can be

enhanced by deep-bodied and laterally compressed forms.

To look for a signature of these processes at a broad

macroevolutionary scale, we quantified the body shapes of

3322 species of marine teleostean fishes using a series of

linear measurements. We scored each species for whether

they were reef-associated or not and tested for morpho-

logical differences using a phylogenetic framework. Our

results confirmed significant overall shape differences

between reef-associated teleosts and those occupying

structurally simpler marine habitats. Reef-associated spe-

cies have, on average, deeper bodies and higher depth-to-

width ratios, while non-reef species are more streamlined

with narrower and shallower caudal peduncles. Despite the

numerous evolutionary forces that may influence body

shapes on a broad macroevolutionary scale, our results

reveal differences in body shapes between reef-associated

and non-reef species that are consistent with hydrome-

chanical models of swimming kinematics as well as with

microevolutionary patterns.

Keywords Habitat structural complexity � Fish body

shapes � Fish swimming � Macroevolution � Morphological

diversity

Introduction

Reefs are among the most diverse and biologically pro-

ductive environments on Earth (Sargent and Austin

1949, 1954; Odum and Odum 1955; Kohn and Helfrich

1957; Connell 1978; Hatcher 1988; Ferreira et al. 2001;

Steneck et al. 2002; Monismith 2007). Despite representing

only a small percentage of total oceanic surface area, reefs

are home to a disproportionately large fraction of marine

species (Spalding and Grenfell 1997; Spalding et al. 2001;

Roberts et al. 2002; Spalding and Brown 2015). Among

fishes, an estimated 4000 to 8000 species (i.e., * 22–44%

of marine fishes) are associated with coral and temperate

reef habitats (Roberts and Ormond 1987; Choat and Bell-

wood 1991; Spalding et al. 2001; Aguilar-Medrano and

Arias-González 2018). One of the reasons reefs can support

such diverse communities is that they are structurally

heterogeneous and generally far more complex than other

marine habitats (Emery 1978; Choat and Bellwood 1991;

Sale 1991; Spalding et al. 2001; Gratwicke and Speight

2005a, b; Lingo and Szedlmayer 2006). These character-

istics increase the number of available ecological niches as
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well as overall productivity (Talbot 1965; Risk 1972;

Luckhurst and Luckhurst 1978; Bellwood and Wainwright

2002; Alfaro et al. 2007). Consequently, reefs can support

both ecologically and functionally diverse fish communi-

ties (Gratwicke and Speight 2005a; Farré et al. 2015;

Aguilar-Medrano and Arias-González 2018; Evans et al.

2019).

Habitat structural complexity can also have major

implications for fish morphology by influencing the

direction and/or the magnitude of evolutionary change.

Complex habitats, such as coral and temperate reefs, con-

tain numerous physical obstacles that fishes must avoid or

use to their advantage and are therefore predicted to select

for morphologies that improve maneuverability, i.e.,

unsteady swimming (Webb 1994; Blake 2004; Langerhans

and Reznick 2010). Structurally simpler habitats, for

example the pelagic zone where obstacles and refuges from

predators are limited, are expected instead to select for

morphologies that improve energy-efficient swimming

over long distances, i.e., steady swimming (Webb 1994;

Blake 2004; Langerhans and Reznick 2010). It has been

argued that there are trade-offs related to body shape

associated with increasing performance for either steady or

unsteady swimming (Webb 1982; Blake 1983; Webb 1994;

Langerhans 2009; Domenici 2010; Langerhans and

Reznick 2010). Hydromechanical models predict that

steady swimming is facilitated by a fusiform or streamlined

body shape and a narrow caudal peduncle, as these char-

acteristics help to minimize energy loss from drag (Breder

1926; Keast and Webb 1966; Webb 1984; Webb and

Weihs 1986; Blake et al. 1995; Walker 1997; Blake 2004;

Langerhans 2009; Langerhans and Reznick 2010). Con-

versely, unsteady swimming performance can be improved

by deeper, laterally compressed bodies and deeper caudal

peduncles, traits that are thought to facilitate sharp turns

and rapid acceleration (Alexander 1967; Webb 1984;

Webb and Weihs 1986; Webb et al. 1996; Walker 1997;

Schrank et al. 1999; Langerhans 2009). In structurally

complex reefs, lateral compression may also facilitate

predator evasion by allowing fishes to seek refuge in nar-

row spaces created between rocks or corals (Hixon and

Beets 1993; Walker 2000; Lingo and Szedlmayer 2006).

The predictions concerning body shapes that improve

performance and fitness in simple versus complex habitats

have become pervasive in the fish biology literature and are

cited in ichthyology textbooks as a classic example of how

habitat affects body shape (e.g., Moyle and Cech 2004;

Helfman et al. 2009). These predictions have so far been

well supported both by interspecific comparisons of

swimming kinematics within an experimental framework

(Webb et al. 1996; Schrank et al. 1999; Webb and Fairchild

2001) and by microevolutionary ecological studies com-

paring body shapes between populations occupying

habitats of differing structural complexity (Ehlinger and

Wilson 1988; Walker 1997). Support for some of these

predictions has also been shown in species-level compar-

isons across specific taxonomical groups (Davis and

Birdsong 1973; Frédérich et al. 2016). However, it remains

to be seen if there is a macroevolutionary signature for

these patterns at a very broad taxonomic scale. Addition-

ally, given the exceptional ecological and functional

diversity of coral and temperate reef fish communities

(Gratwicke and Speight 2005a; Farré et al. 2015; Aguilar-

Medrano and Arias-González 2018; Evans et al. 2019), we

also expect to find evidence for increased morphological

disparity among the reef-associated species (Choat and

Bellwood 1991; Claverie and Wainwright 2014). In order

to test these hypotheses, we compiled a large morphometric

dataset of linear traits measured on teleostean fishes with a

sufficient phylogenetic scope to incorporate multiple

independent evolutionary transitions between reef and non-

reef habitats (Supplementary Figure S1). We then applied

phylogenetic comparative methods to compare body and

caudal peduncle shapes as well as disparities between reef-

associated teleosts (complex habitats) and those occupying

other types of habitats (considered as less complex).

Methods

Morphological measurements

For this study, we used a subset of 3322 marine teleosts

that are part of a larger morphometric dataset assembled

from the Smithsonian National Museum of Natural History

preserved fish collections [see Price et al. (2019) for a more

comprehensive description of the full dataset]. The subset

includes species that can occupy both marine and brackish

habitats but excludes those that are found exclusively in

brackish salinities. We restricted our analyses to six body

and caudal peduncle linear measurements for which we had

clear hydromechanical predictions about how they would

differ as a function of habitat structural complexity

(Table 1). These original variables were also used to cal-

culate six additional composite variables that add infor-

mation about the overall shape of the body and caudal

peduncle (Table 2). Multivariate analyses (e.g., morpho-

logical disparity, phylogenetic PCAs in Supplementary

Material) were performed only on the original variables as

the ratios contain redundant information.

We size-standardized the original variables using a

modification of the log-shape ratios method (Mosimann

1970; Mosimann and James 1979; Darroch and Mosimann

1985). Briefly, we divided each morphological variable by

the geometric mean of three linear measurements indica-

tive of the overall size of our specimens (i.e., standard
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length, maximum body depth and maximum fish width)

and log-transformed the resulting ratios. This method was

preferred to using residuals of a phylogenetic regression on

standard length for two reasons: (1) it preserves informa-

tion about evolutionary allometry in the data, and (2) it

allows us to conserve standard length as a shape variable

instead of using it only as a size proxy. Composite vari-

ables were not size-standardized as they are ratios of one or

more of the original variables and therefore already

account for relative size.

Habitat complexity

To compare body shapes between species occupying

complex habitats and those occupying simpler ones, we

used a binary coding scheme, as coral and temperate reefs

are unquestionably the most structurally complex among

aquatic habitats (Emery 1978; Monismith 2007) and

detailed quantitative data on habitat structural complexity

is non-existent for most species. Therefore, we scored each

of the species in our dataset as either reef-associated (i.e.,

Table 2 Definitions of composite variables calculated as ratios of the original morphological traits

Ratios Acronym Formula Interpretation References

Fineness FR SL/

(MBDxMFW)1/

2

Higher values indicate streamlined/elongated

body shapes; lower values indicate

compressed/rounded body shapes.

Bainbridge (1960), Ohlberger et al. (2006),

Fisher and Hogan (2007), de Assumpção

et al. (2012), Walker et al. (2013)

Depth-to-

width

DW MBD/MFW Higher values indicate deep and laterally

compressed body shapes; lower values

indicate dorso-ventrally compressed body

shapes.

Gatz (1979), Watson and Balon (1984), Freitas

et al. (2005), Casatti and Castro (2006),

Blasina et al. (2016), Prado et al. (2016), De

Queiroz et al. (2018)

Relative head

depth

RHD HD/MBD Higher values indicate a deep head relative

to the body; lower values indicate

shallower heads.

Oliveira et al. (2010), Prado et al. (2016)

Caudal

peduncle

compression

index

CPCI MCPD/MCPW Higher values indicate that the caudal

peduncle is deeper than wide; lower values

indicate the contrary.

Watson and Balon (1984), Freitas et al. (2005),

Casatti and Castro (2006), Blasina et al.

(2016), De Queiroz et al. (2018)

Caudal

tapering

index (depth)

CTID MCPD/MBD Higher values indicate a relatively deep

caudal peduncle; lower values indicate a

tapering caudal peduncle along the body

depth axis.

Webb and Weihs (1986), Fisher and Hogan

(2007), Oliveira et al. (2010), Prado et al.

(2016)

Caudal

tapering

index

(width)

CTIW MCPW/MFW Higher values indicate a relatively wide

caudal peduncle; lower values indicate a

tapering caudal peduncle along the body

width axis.

Oliveira et al. (2010), Prado et al. (2016)

The references column contains examples of previous studies that have used similarly defined ratios

Table 1 Definitions of the original morphological traits measured on preserved specimens of teleostean fishes

Variable Acronym Definition

Standard length SL Straight-line distance between the anterior tip of the upper jaw and the mid-lateral posterior edge of the

hypural plate (or to the posterior tip of the vertebral column in fishes lacking a hypural plate).

Maximum body depth MBD Greatest depth as measured by a straight-line distance from dorsal to ventral surfaces of the body

(posterior to the operculum and anterior to the caudal peduncle).

Maximum fish width MFW Greatest width of the fish. Care was taken to note if this measurement was taken on the head or on the

body.

Head depth HD Vertical distance from dorsal to ventral surface of the head passing through the pupil of the eye.

Minimum caudal

peduncle depth

MCPD Depth as measured by a straight-line distance from the dorsal to ventral surfaces of the caudal peduncle at

its narrowest point. The caudal peduncle is defined as the area between the posterior end(s) of the dorsal

and/or anal fin(s) and the base of the caudal fin.

Minimum caudal

peduncle width

MCPW The minimum width of the caudal peduncle, as defined above.
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complex habitats, n = 1496) or not (i.e., simpler habitats,

n = 1826). Although teleosts living in non-reef habitats

may experience a wide variety of structural complexities,

these are unlikely to match the complexity of coral and

temperate reefs. Habitat information was extracted from

Fishbase (Froese and Pauly 2020) using the species func-

tion from the rfishbase package (Boettiger et al. 2012) in R.

To ensure data quality, we performed random spot-checks

across the dataset, verifying the Fishbase data against other

sources, including scientific literature and other online data

repositories.

Analyses

The phylogenetic context for all analyses was provided by

a tree published by Rabosky et al. (2018), pruned to the

species contained in our dataset. Phylogenetic ANOVAs

(Garland et al. 1993) and pgls ANOVAs (Freckleton et al.

2002) were performed on both the size-standardized vari-

ables and the composite variables to determine whether

there were significant differences in body shape between

reef-associated and non-reef teleosts. The phylogenetic and

pgls ANOVAs were implemented using the R packages

geiger (Pennell et al. 2014) and caper (Orme et al. 2018),

respectively. For the phylogenetic ANOVAs sensu Garland

et al. (1993), the statistical significance of the F value was

determined by generating a null distribution based on 1000

simulations of the dependent variable on the phylogenetic

tree under a Brownian motion model of evolution.

Although our hypotheses explicitly predict differences

in body shapes across habitats and not differences in body

size, we also ran the ANOVAs on the log-transformed

geometric mean to see if reef-associated and non-reef

species differed in overall size. Moreover, we looked for

differences in allometric trajectories between reef-associ-

ated and non-reef teleosts. Given that we predicted that reef

and non-reef habitats would select for specific body shape

characteristics, we tested for differences in allometric tra-

jectories within an adaptive framework. For this purpose,

we used the method implemented in the R package slouch

(Kopperud et al. 2020) that can be used to determine

whether traits under differing selective regimes are evolv-

ing toward different primary optima (Hansen et al. 2008).

For each of the morphological traits, we compared the fit of

four models: (1) a grand mean (or intercept-only) model

including only the dependent variable, (2) a more complex

grand mean model estimating separate intercepts for the

reef-associated and non-reef taxa, (3) a regression model of

the dependent variable as a function of size and (4) a

regression model that estimates separate coefficients for the

reef-associated and non-reef taxa. In the regression models,

the primary optimum is modeled as a linear function

between the trait of interest and size. The fit of each of the

models can be compared using the Akaike information

criterion (AICc) modified for small sample sizes (Hurvich

and Tsai 1989; Burnham and Anderson 2004). These

models allow us to determine whether the trait is

approaching an optimum and how fast it is doing so, as

well as the proportion of variation in the trait that can be

explained by adaptation toward that optimum. The rate at

which the trait value approaches the optimum is obtained

by interpreting the phylogenetic half-life, which is defined

as the ‘‘time it takes for the expected trait value to move

half the distance from the ancestral state to the primary

optimum’’ (Hansen 1997; Hansen et al. 2008). The half-life

is interpreted relative to the length of the phylogeny: a

relatively short phylogenetic half-life implies rapid adap-

tation toward the primary optimum, whereas a longer half-

life implies a persistence of the ancestral influence (a half-

life of infinity corresponds to Brownian motion) (Hansen

et al. 2008). The regression models also include estimated

slopes for both an optimal regression and an evolutionary

regression. The optimal regression can be interpreted as the

expected relationship between shape variables and size in

the absence of constraints on the evolution of the traits

toward their respective optima. The evolutionary regres-

sion is the observed relationship between the shape vari-

ables and size and is expected to have a shallower slope

compared to the optimal regression if there is a lag in

adaptation. The comparisons of allometric trajectories were

performed on the log-transformed original variables prior

to size standardization.

Finally, to test for differences in morphological dispar-

ities between reef-associated and non-reef teleosts, we

estimated and compared group-wise disparities using the

morphol.disparity function in geomorph (Adams et al.

2020). Briefly, the function calculates disparity as the sum

of the diagonal elements from the group covariance matrix

scaled by the number of observations in each group (Zel-

ditch et al. 2012). Disparity was estimated first on the log-

transformed original variables and then on the log-shape

ratios (size-standardized variables).

Results

The results of phylogenetic ANOVAs (sensu Garland et al.

1993) on the original size-standardized variables indicate

significant differences between reef-associated and non-

reef teleostean fishes in standard length, maximum body

depth, head depth and minimum caudal peduncle depth and

width (Table 3; Fig. 1). Reef-associated species were

found to be less elongate than non-reef species, to have

deeper bodies and heads, and to possess both deeper and

wider caudal peduncles. We did not find a significant dif-

ference in maximum fish width between reef-associated
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Table 3 Results of

phylogenetic ANOVAs

(Garland et al. 1993) on size-

standardized original variables

and on composite variables as a

function of reef-associated and

non-reef species

Morphological trait F value Phylogenetic p value Adj R2

Geometric mean (size) 3.38 0.768 \0.001

Standard length 303.81 0.002 0.084

Maximum body depth 354.9 0.004 0.096

Maximum fish width 0.059 0.987 -0.0002

Head depth 266.05 0.014 0.074

Minimum caudal peduncle depth 348.27 0.003 0.095

Minimum caudal peduncle width 202.29 0.019 0.057

Fineness ratio 303.81 0.005 0.084

Depth-to-width ratio 168.06 0.029 0.048

Relative head depth 15.56 0.534 0.004

Caudal peduncle compression index 52.74 0.28 0.015

Caudal tapering index (depth) 88.56 0.159 0.026

Caudal tapering index (width) 142.45 0.052 0.041

Statistically significant results are in bold fonts
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Fig. 1 Violin plots showing differences in distribution for the size-standardized shape variables between non-reef (blue) and reef-associated

(yellow) fishes. The violin plots are overlain with boxplots that specify the position of the medians, first and third quartiles
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and non-reef species. Similar results were obtained for the

composite variables (Table 3, Fig. 2): we found significant

differences between reef-associated and non-reef teleosts

in fineness and depth-to-width ratios. Reef-associated

species have, on average, lower fineness ratios and greater

depth-to-width ratios than non-reef species. We did not find

significant differences in caudal peduncle compression

index or in either of the two caudal tapering indices

between reef-associated and non-reef teleosts. We focus

here on the results from the Garland et al. (1993) method

because the phylogenetic structure of habitat transitions

within teleosts (see Supplementary Fig. S1) indicates that

taking into account the phylogenetic pattern of the discrete

trait may also remove much of the ecological signal as well

(i.e., we expect adaptation toward phylogenetically struc-

tured optima). The results from the pgls ANOVAs are

available in Supplementary Table S5. There were some key

differences between these two methods with the pgls

ANOVAs uncovering significant differences in maximum

fish width and both caudal tapering indices, while signifi-

cant differences in standard length and fineness ratio

between reef-associated and non-reef species were lost.

The comparison of geometric means between habitats

showed no significant difference in overall body size

between reef-associated and non-reef teleosts (Table 3). As

for differences in allometric trajectories, the results from

our analyses using slouch (Table 4) revealed that with the

exception of maximum fish width, the models with separate

estimates of the regression coefficients for reef-associated

and non-reef species were always preferred over those with

combined estimates of the parameters, as indicated by their

lower AICc values. For maximum fish width, a model with

a single estimate of the regression coefficients for reef-

associated and non-reef teleosts was equally well sup-

ported. The best supported models explained large pro-

portions of the variation with R2 values ranging from 0.62
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Fig. 2 Violin plots showing differences in distribution for the composite variables between non-reef (blue) and reef-associated (yellow) fishes.

The violin plots are overlain with boxplots that specify the position of the medians, first and third quartiles

1432 Coral Reefs (2020) 39:1427–1439

123



Table 4 Results from regressions of log-transformed original variables on log-size as a function of habitat (n = 3313)

Morphol
ogical
trait

Model AICc
Phylogene
tic half-
life

Stationary
variance

Rate of
adaptation

R
2

Intercept Optimal
regression
slope

Evolutionary
regression
slopeNon-reef

Reef-
associated

Standard
length

Intercept
only

4660 31.3 0.428 0.022 2.75e-16 5.023 (0.043) NA NA

Single
regression

-1198 8.07 1e-08 0.086 0.833 1.826 (0.048)
0.964
(0.009)

0.906
(0.009)

Intercept by
habitat

4661 31.24 0.427 0.022 3.82e-04
5.041
(0.045)

4.976
(0.059)

NA NA

Regression
by habitat -1247 7.85 0 0.088 0.835 1.843

(0.047)
1.743
(0.048)

0.963
(0.009)

0.906
(0.008)

Max
body
depth

Intercept
only

5248 34.82 0.541 0.020 1.10e-15 3.249 (0.055) NA NA

Single
regression

-799 6.48 0 0.107 0.863 -0.730 (0.048)
1.117
(0.010)

1.063
(0.009)

Intercept by
habitat

5246 34.54 0.538 0.020 1.27e-03
3.215
(0.057)

3.355
(0.075)

NA NA

Regression
by habitat -869 6.26 0 0.111 0.866 -0.750

(0.047)
-0.637
(0.048)

1.114
(0.009)

1.062
(0.009)

Max fish
width

Intercept
only

5233 28.75 0.488 0.024 -5.49e-16 2.762 (0.040) NA NA

Single -1712 4.67 0 0.148 0.888 -1.088 (0.037) 1.067 1.030
regression (0.008) (0.007)

Intercept by
habitat

5234 28.61 0.486 0.024 4.51e-04
2.743
(0.044)

2.813
(0.057)

NA NA

Regression
by habitat -1710 4.67 0 0.148 0.888 -1.086

(0.037)
-1.097
(0.038)

1.068
(0.008)

1.030
(0.007)

Head
depth

Intercept
only

5108 34.66 0.518 0.020 4.12e-16 2.836 (0.054) NA NA

Single
regression

-914 6.50 0 0.107 0.857 -1.045 (0.047)
1.080
(0.009)

1.027
(0.009)

Intercept by
habitat

5106 34.43 0.515 0.020 1.04e-03
2.806
(0.056)

2.930
(0.073)

NA NA

Regression
by habitat -971 6.33 0 0.109 0.86 -1.063

(0.046)
-0.963
(0.047)

1.078
(0.009)

1.027
(0.009)

Min
caudal
peduncle
depth

Intercept
only

5602 35.91 0.613 0.019 -5.49e-16 1.836 (0.062) NA NA

Single
regression

1923 28.53 0 0.024 0.675 -1.738 (0.137)
1.198
(0.016)

0.945
(0.013)

Intercept by
habitat

5589 35.02 0.601 0.020
4.810e-0

3
1.768
(0.062)

2.059
(0.080)

NA NA

Regression
by habitat 1855 27.03 0 0.026 0.681 -1.776

(0.131)
-1.501
(0.134)

1.180
(0.016)

0.943
(0.013)

Min
caudal
peduncle
width

Intercept
only

6373 30.24 0.705 0.023 2.75e-16 0.654 (0.052) NA NA

Single
regression

3117 21.16 0.032 0.033 0.609 -3.213 (0.117)
1.193
(0.017)

1.004
(0.014)

Intercept by
habitat

6354 29.43 0.691 0.024 6.37e-03
0.570
(0.054)

0.890
(0.070)

NA NA

Regression
by habitat 3071 20.64 0.030 0.034 0.615 -3.249

(0.115)
-3.030
(0.118)

1.186
(0.016)

1.003
(0.014)

Rows in bold are the best fitting models based on the comparison of AICc values. Numbers in parentheses are the standard

errors of the estimates. Tree depth = 192.78 MY

Coral Reefs (2020) 39:1427–1439 1433

123



to 0.89. Compared to the regression models, the intercept-

only models explain only a fraction of the variation in the

data as demonstrated by their low R2 values. Moreover, the

amount of variation explained by the two-intercept models

is only slightly larger than that of the single-intercept

models and the differences in the estimated intercepts

between the reef-associated and non-reef species are quite

low. These results indicate that size variation has a strong

effect on body shape and that whether a fish lives in a reef

or a non-reef habitat has a measurable but negligible

impact on this allometric relationship. Furthermore, for all

variables, the estimated regression slopes are close to one,

which suggests that the impressive variation in body shapes

that can be observed among teleostean fishes does not

require large deviations from isometry to be produced.

Finally, for all of the best-fitting models, the phylogenetic

half-lives are far shorter than the depth of the tree, sug-

gesting that all traits are rapidly adapting toward their

respective primary optima.

Prior to size standardization, we did not find a signifi-

cant difference in disparities between the reef-associated

and non-reef teleosts. However, the comparison of Pro-

crustes variances estimated from the size-standardized

variables revealed that disparities were significantly greater

in non-reef species (Table 5).

Discussion

Our results reveal clear body shape differences between

teleostean lineages inhabiting the structurally complex

reefs and those that occupy relatively simpler habitats,

which cannot be explained by differences in evolutionary

allometry. The directions of the shape differences are

consistent with predictions from hydromechanical models

of swimming kinematics and observations from micro- and

macroevolutionary studies. Contrary to our expectation, we

also found that non-reef teleostean fishes are more mor-

phologically disparate than reef-associated ones.

We predicted that across teleostean fishes, performance-

based selection for either sustained swimming or greater

maneuverability would lead to body shape differences

between species associated with complex reef habitats and

those living in structurally simpler habitats. We found that,

on average, reef-associated species had deeper bodies rel-

ative to their overall size and width, which supports our

prediction that they should be deeper and more laterally

compressed than species in relatively simpler habitats, as

these traits are thought to improve accelerating and turning

maneuvers (Alexander 1967; Webb 1983, 1994; Domenici

2010). Reef-associated species were also found to have

deeper and wider caudal peduncles relative to their size

compared to the non-reef species. Thicker caudal

peduncles may be advantageous for fast starts in reef

environments by contributing to the thrust generated by the

caudal fin during quick bursts of acceleration (Webb 1994;

Walker 1997; Domenici 2010; Bellwood et al. 2014). In

contrast, non-reef teleosts were more elongate, had greater

fineness ratios and were not as deep-bodied as the reef-

associated species. Furthermore, the caudal peduncles of

non-reef teleosts were narrower (width) and shallower

(depth) than those of the reef-associated species. These

results match our predictions for a more streamlined mor-

phology with a tapering tail in structurally simpler habitats,

characteristics which are thought to facilitate steady

swimming by maximizing thrust and minimizing energy

loss from drag and recoil (Fisher and Hogan 2007;

Domenici 2010; Langerhans and Reznick 2010). These

shape differences may also be explained in part by the

recurrence of elongated morphologies with reduced/taper-

ing tails in deep-sea habitats (e.g., Notacanthiformes,

Macrouridae, Ophidiiformes).

Given the results mentioned above, it may seem sur-

prising that neither depth nor width caudal peduncle

tapering indices were found to be significantly different

between the reef-associated and non-reef teleosts, despite

that they are both, on average, lower for the non-reef

species. This result could reflect an organismal design

constraint: the shape of the caudal peduncle is most likely

influenced by the overall shape of the body such that

deeper bodied species will also have a relatively deeper

caudal peduncle. However, the significant results for the

size-standardized minimum caudal peduncle depth and

width variables indicate that reef-associated species have a

comparatively deeper and wider caudal peduncle relative to

their overall size than non-reef species.

Although our predictions based on hydromechanical

models were well supported by the data, this is not to say

that all sustained swimmers should exhibit a streamlined

morphology, nor that high maneuverability can only be

achieved with a deep and laterally compressed body shape.

Indeed, many of these models are predicated on the

assumption that the main thrust producing appendage is the

caudal fin. However, fish swimming can be broadly divided

in two main categories: (1) body–caudal fin (BCF) swim-

mers generate thrust using undulations along the body

ultimately transmitting force to the caudal fin, and (2)

median-paired fin (MPF) swimmers generate thrust using

combinations of their other median and paired fins

(Alexander 1967; Webb 1975; Webb 1994; Sfakiotakis

et al. 1999). Therefore, hydromechanical constraints that

apply for BCF swimming kinematics may not always be

the same as those that influence MPF swimming kine-

matics. For example, Walker et al. (2013) found differ-

ences in the strength and the direction of the relationship

between fineness ratio and endurance swimming
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performance when comparing BCF and MPF swimmers.

Likewise, high maneuverability can be achieved with body

shapes other than deep and laterally compressed forms.

Many species occupying complex habitats predominantly

use MPF swimming gaits (Gerstner 1999; Blake 2004), and

Blake (2004) argued that there may be multiple optimal

body forms for MPF swimmers. Boxfishes provide one

such example where high maneuverability is achieved

without a deep and laterally compressed body (Blake 1977;

Walker 2000; Bartol et al. 2005). Another way to increase

maneuverability is to have a more flexible body (e.g., Fish

2002). Anguilliformes provide a great example of this

strategy, as eels are arguably just as efficient as laterally

compressed deep-bodied fishes in navigating structurally

complex habitats owing to their flexible elongated bodies

and reduced lateral appendages (Webb 1994; Pfaff et al.

2016). These alternative strategies may help explain why

we did not find a significant decrease in body width in reef

teleosts compared to non-reef species. Our results may

indicate that a laterally compressed body shape is merely

the most prevalent strategy for occupants of complex

habitats, despite other strategies also being quite common.

The results from our slouch analyses indicate that

allometry is a major source of shape variation across tel-

eostean fishes, as the intercept-only models were a poor fit

to the data. For all traits except maximum fish width, the

best-fitting model allowed the allometric intercept to vary

between reef and non-reef habitats, and the next best-fitting

model was a single allometric slope and intercept (DAICc:
46–70), which suggests that there is a measurable differ-

ence between the evolutionary allometries in reef-associ-

ated and non-reef lineages. The phylogenetic half-life

estimates for the best-fitting models reveal that while

adaptation is not immediate (half-life = 0), it is rapid rel-

ative to the depth of the phylogeny, which is again

indicative of the strength of the allometric relationship.

Similarly, the difference between the optimal and evolu-

tionary regression slopes indicates few constraints on

optimal shape evolution, although the evolutionary slope is

slightly shallower suggesting some minor lag in adaptation.

These results are consistent with the idea that changes in

body proportions can provide a path of least resistance for

evolutionary change (Marroig and Cheverud 2005; Fried-

man et al. 2019). However, when we consider the addi-

tional variation explained by the two-intercept models

compared to the single-intercept ones, the amount is

minuscule (\ 0.6%) and the estimated intercepts for reef-

associated and non-reef fishes are very similar. Therefore,

habitat, in the form of either living in a complex reef or a

simpler non-reef environment, has an identifiable but

negligible impact on evolutionary allometries within mar-

ine teleosts. Thus, the strong shape differences we observed

between reef-associated and non-reef fishes were not pri-

marily driven by differences in evolutionary allometries.

The comparison of morphological disparity estimates

between reef-associated and non-reef teleosts revealed that

once shape variation correlated to size was removed from

the data, structurally simpler habitats contained greater

body shape disparity (Table 5). This finding contradicts our

prediction, stemming from several lines of evidence, that

the structurally complex reef habitats should provide more

axes of niche diversification than the simpler ones (Willis

et al. 2005). First, reefs are well known for supporting fish

communities that are highly ecologically and functionally

diverse (Gratwicke and Speight 2005a; Farré et al. 2015;

Aguilar-Medrano and Arias-González 2018; Evans et al.

2019). Second, higher rates of morphological evolution

have been recorded for reef-associated species compared to

their non-reef counterparts in both the Haemulidae (Price

et al. 2013) and the Labridae (Price et al. 2011), two

families that are prevalent in reef environments [although

see Frédérich et al. (2016) who found higher phenotypic

rates and disparities in non-reef Carangoidei]. Finally, MPF

swimming is thought to be more common in structurally

complex habitats (Gerstner 1999), and one might expect

higher disparities among the MPF swimmers compared to

the BCF swimmers. This is because most MPF swimmers

rely on the caudal fin at faster gaits (i.e., steady swimming)

but primarily use combinations of their other median and

paired fins at slower gaits (i.e., unsteady swimming) (Webb

1994; Blake 2004). This can facilitate a decoupling

between the body regions that are engaged at faster versus

slower gaits, leading to a greater number of possibilities to

simultaneously optimize morphology for these specific

gaits (Blake et al. 1995; Blake 2004). Higher disparities in

the non-reef species may be explained by the fact that in

our binary scoring of habitats, the ‘‘structurally simpler’’

category incorporates several different types of habitats

(e.g., benthic, pelagic, deep-sea) that may each involve

additional selective pressures. Additionally, differences in

disparities could also be explained by the greater amount of

time that has been spent outside of reef environments

during the evolutionary history of teleosts. Indeed, results

from stochastic character mapping suggest that teleosts

Table 5 Estimates of multivariate morphological disparities for reef-

associated and non-reef species for the original variables

Dataset Habitat Procrustes

variance

p value

Log-transformed variables Reef 3.52 0.132

Non-reef 3.75

Log-shape ratios Reef 0.79 0.001

Non-reef 1.41

Statistically significant results are in bold fonts
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have spent, on average, 16% more time outside of reef

habitats during their evolutionary history, thus providing

increased opportunity for non-reef lineages to accumulate

morphological disparity (Supplementary Material).

Our results support predictions based on long-standing

hydromechanical models. However, the R2 values obtained

from the phylogenetic ANOVAs indicate that habitat

complexity is by no means the only factor that explains

variation in size-standardized body shape across marine

teleostean fishes, and thus, some caution is necessary when

interpreting these results. For several reasons, it is perhaps

not too surprising that the amount of variation explained

only by differences in habitat complexity is somewhat low.

We are examining evolutionary patterns across more than

3000 species, and many other factors are known to influ-

ence fish body shape [e.g., trophic ecology (Keast and

Webb 1966; Lavin and McPhail 1985; Bellwood et al.

2006; Clabaut et al. 2007), predation pressure (Lavin and

McPhail 1985; Brönmark and Miner 1992; Langerhans

et al. 2004; Domenici et al. 2008; Langerhans 2009; Price

et al. 2015), depth (Zimmerman et al. 2006; Clabaut et al.

2007), water flow (Langerhans et al. 2003; McGuigan et al.

2003; Kerfoot and Schaefer 2006; Leal et al. 2011)].

Moreover, due to the lack of quantitative data on structural

complexity, we were only able to compare species with

two very broadly defined habitat categories. We also did

not distinguish between BCF and MPF swimmers in our

analyses, and fishes that use these different forms of

locomotion may show different pattern strengths between

shape and swimming performance (Walker et al. 2013).

Finally, we have focused largely on body shapes, yet fin

traits are also important factors in swimming kinematics

(Weihs 1989; Gerstner 1999; Fulton et al. 2001; Colgate

and Lynch 2004; Bartol et al. 2005). Despite these caveats,

the strong support for our predictions concerning the

specific body shapes expected to increase swimming per-

formance in complex versus less complex environments

provides evidence that habitat complexity has driven

divergent body shape evolution in reef-associated and non-

reef marine teleosts. Our results therefore confirm reef

habitats have made an important contribution to shaping

and maintaining present-day patterns of teleostean mor-

phological diversity (Bellwood et al. 2015).
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